
CONCLUDING REMARKS
BRENT LEBACK, MEMBER OF THE NVIDIA HPC SDK TEAM

PROGRAMMING THE NVIDIA PLATFORM
CPU, GPU, and Network

ACCELERATED STANDARD LANGUAGES
ISO C++, ISO Fortran

PLATFORM SPECIALIZATION
CUDA

ACCELERATION LIBRARIES

Core CommunicationMath Data Analytics AI Quantum

std::transform(par, x, x+n, y, y,
[=](float x, float y){ return y + a*x; }

);

do concurrent (i = 1:n)
y(i) = y(i) + a*x(i)

enddo

import cunumeric as np
…
def saxpy(a, x, y):

y[:] += a*x

#pragma acc data copy(x,y) {
...
std::transform(par, x, x+n, y, y,

[=](float x, float y){
return y + a*x;

});
...
}

#pragma omp target data map(x,y) {
...
std::transform(par, x, x+n, y, y,

[=](float x, float y){
return y + a*x;

});
...
}

__global__

void saxpy(int n, float a,

float *x, float *y) {

int i = blockIdx.x*blockDim.x +

threadIdx.x;

if (i < n) y[i] += a*x[i];

}

int main(void) {

...

cudaMemcpy(d_x, x, ...);

cudaMemcpy(d_y, y, ...);

saxpy<<<(N+255)/256,256>>>(...);

cudaMemcpy(y, d_y, ...);

ACCELERATED STANDARD LANGUAGES

ISO C++, ISO Fortran

INCREMENTAL PORTABLE OPTIMIZATION

OpenACC, OpenMP

PLATFORM SPECIALIZATION

CUDA

WHAT DO WE MEAN BY INTEROPERABLE?

Different programming models can appear in the same source file

Objects from different programming models can be linked together into the same
program

One programming model can use data declared/defined/initialized in a different
programming model

One programming model can call kernels or device functions written in another
programming model

Programming models can share attributes of the device, such as the current device,
current context, and streams

SOME SOURCE CODE SHORTCUTS

% cat t1.f90
!$ print *,"Compiled for OpenMP"
!@acc print *,"Compiled for OpenACC"
!@cuf print *,"Compiled for CUDA Fortran"
stop
end
% for op1 in "" -mp; do for op2 in "" -acc; do for op3 in "" -cuda; do nvfortran $op1 $op2 $op3 t1.f90; ./a.out; done; done; done
FORTRAN STOP
Compiled for CUDA Fortran
FORTRAN STOP
Compiled for OpenACC
FORTRAN STOP
Compiled for OpenACC
Compiled for CUDA Fortran
FORTRAN STOP
Compiled for OpenMP
FORTRAN STOP
Compiled for OpenMP
Compiled for CUDA Fortran
FORTRAN STOP
Compiled for OpenMP
Compiled for OpenACC
FORTRAN STOP
Compiled for OpenMP
Compiled for OpenACC
Compiled for CUDA Fortran
FORTRAN STOP

% cat t2.F90
!This is equivalent
#ifdef _OPENMP
print *,"Compiled for OpenMP"
#endif
#ifdef _OPENACC
print *,"Compiled for OpenACC"
#endif
#ifdef _CUDA
print *,"Compiled for CUDA Fortran"
#endif
stop
end

C/C++ OPEN[MP|ACC], STDPAR + CUDA

Use nvcc to compile CUDA C/C++

Use nvc or nvc++ to compile OpenMP

Calling CUDA Libraries with host-side interfaces does not require nvcc; use the –
cuda and –cudalib options for easier compiling and linking.

By default, nvc and nvc++ generate relocatable device code (rdc). The nvcc
compiler does not. Be aware of that.

We are working on C++ stdpar interoperability with pragma-based data directives.
It is a hard problem.

FORTRAN OPEN[MP|ACC], STDPAR + <EVERYTHING ELSE>

Use nvfortran to compile for all models

Fortran calling C is well-defined, as is CUDA Fortran + CUDA C.

The NVIDIA HPC SDK contains Fortran modules for interfacing to the CUDA
Libraries. Use the –cudalib option because some interfaces require extra wrapper
libraries.

Because OpenMP defines a host-fallback mode, some cases which work with
OpenACC+CUDA are not quite right yet with OpenMP+CUDA. We are working on it.

We need to define/decide if/how we allow non-Fortran features in do concurrent.

